
MOpt.jl Documentation
Release 0.1

Forian Oswald and Thibaut Lamadon

October 01, 2014

Contents

1 Getting Started 3
1.1 Setting the problem . 3
1.2 Example Useage . 3

2 Setting up a moment problems 5
2.1 Step 1: add parameters . 5
2.2 Step 2: add moments . 5
2.3 Done, next is selecting an algorithm . 6
2.4 Putting all at once using Lazy.jl . 6

3 Writing an objective function 7

4 Indices and tables 9

i

ii

MOpt.jl Documentation, Release 0.1

This is a Julia library to run moment optimization in parallel.

Contents:

Contents 1

MOpt.jl Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting Started

Let’s see how to get started very quickly. You start by

1.1 Setting the problem

This package implements several MCMC algorithms to optimize a non-differentiable objective function. The main
application are likelihood-free estimators, which requires evaluating the objective at many regions. In general, this
implements Simulated Method of Moments. The library is targeted to run MCMC on an SGE cluster, where each node
is a chain.

For an R implementation which is the basis of this package, see https://github.com/tlamadon/mopt

1.2 Example Useage

using Mopt

get a parameter vector
p = ["a" => 3.1 , "b" => 4.9]
define params to use with bounds
pb= ["a" => [0,1] , "b" => [0,1]]

get some moments
first entry is moment estimate, second is standard deviation
moms = [

"alpha" => [0.8 , 0.02],
"beta" => [0.8 , 0.02],
"gamma" => [0.8 , 0.02]

]

a subset of moments to match
submoms = ["alpha", "beta"]

call objective
x = Mopt.Testobj(p,moms,submoms)

Define an Moment Optimization Problem
mprob = Mopt.MProb(p,pb,Mopt.Testobj,moms;moments_subset=submoms)

show

3

https://github.com/tlamadon/mopt{]}(https://github.com/tlamadon/mopt

MOpt.jl Documentation, Release 0.1

mprob

step 2: choose an algorithm

algo = Mopt.MAlgoRandom(mprob,opts=["mode"=>"serial","maxiter"=>100])

step 3: run estimation

runMopt(algo)

4 Chapter 1. Getting Started

CHAPTER 2

Setting up a moment problems

This section describes how to create the MProb object that will store the description of the problem. In general this
is composed of the set of parameters we will iterate over together with their bounds, as well as the set of moments to
match, with their value and their precision.

We start by creating an empty MProb object and we progressively add content to it.

using Mopt
mprob = MProb()

We then describe the step required to scuccessfuly set up the object.

2.1 Step 1: add parameters

There are two types of parameters, some are sampled by the algorythm and some are not. Here are ways to add
arguments to the description:

addParam!(mprob, "c", 0.1)
addParam!(mprob, "d", 0.2)
addSampledParam!(mprob, "a", 0.1, 0, 1)
addSampledParam!(mprob, "b", 0.1, 0, 1)

But parameters can also be added all at once using for instance a dictionary

ps = { "c" => 0.1 , "d" => 0.2}
addParam!(mprob,ps)
pss = { "a" => [0.1, 0, 1] , "b" => [0.1, 0, 1]}
addSampledParam!(mprob,pss)

2.2 Step 2: add moments

The second step is to add moments to the description. These are moments that the objective function will use as
matching criteria. This is more for analysis purposes, as ex-post it can be very informative to look at what parameter
is affected by what particular moments, or to check the shape of the moment conditions at maximum.

In a spirit similar to the parameters, moments can be added as follows:

addMoment!(mprob, "m1", 0.1, 0.001)
addMoment!(mprob, "m2", 0.1, 0.001)

5

MOpt.jl Documentation, Release 0.1

But as well using a DataFrame which is usually how moments are loaded, from a csv file or other source. In this case
the used needs to provide the names of the columns that must be used.

dd = DataFrame(name= ["m1", "m2"], value=[0.1,0.1], sd=[0.01,0.01])
addMoment!(mprob, dd, [:name,:value,:sd])

2.3 Done, next is selecting an algorithm

This is it, your problem is now created, you can move to the second step which is to select an algorithm.

2.4 Putting all at once using Lazy.jl

mprob = @> begin
Mprob()
addParam!("c", 0.1)
addParam!("d", 0.2)
addSampledParam!("a", 0.1, 0, 1)
addSampledParam!("b", 0.1, 0, 1)
addMoment!("m1", 0.1, 0.001)
addMoment!("m2", 0.1, 0.001)

end

6 Chapter 2. Setting up a moment problems

CHAPTER 3

Writing an objective function

We show here how to write your own objective function. The signature is:

obj(x::Dict,mom::DataFrame,whichmom::Array{ASCIIString,1},vargs...)

where the first agrument is a dictionary of values for the parameters. The second is a dataFrame that contains infor-
mation about the different moments to match. This will include the value of the moments together with their standard
error.

The objective function should return another Dictionary that includes:

• value: the value of the objective function

• params: the list of parameters with their value, this should just be a deep copy of x

• time: the amount of time spent in the objective function

• moments: a DataFrame with the evaluated moments

here is a full example:

function Testobj(x::Dict,mom::DataFrame,whichmom::Array{ASCIIString,1},vargs...)

t0 = time()

if length(vargs) > 0
if get(vargs[1],"printlevel",0) > 0

info("in Test objective function")
end

end

mm = deepcopy(mom)
nm0 = names(mm)
DataFrames.insert_single_column!(mm,zeros(nrow(mm)),ncol(mm)+1)
names!(mm,[nm0,:model_value])

for ir in eachrow(mm)
ir[:model_value] = ir[:data_value] + 2.2

end

output all moments
mout = transpose(mm[[:moment,:model_value]],1)

subset mm to required moments to compute function value
mm = mm[findin(mm[:moment],whichmom),:]

compute distance

7

MOpt.jl Documentation, Release 0.1

v = sum((mm[:data_value] - mm[:model_value]).^2)

status
status = 1

time out
t0 = time() - t0

return a dict
ret = ["value" => v, "params" => deepcopy(x), "time" => t0, "status" => status, "moments" => mout]
return ret

end

8 Chapter 3. Writing an objective function

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

	Getting Started
	Setting the problem
	Example Useage

	Setting up a moment problems
	Step 1: add parameters
	Step 2: add moments
	Done, next is selecting an algorithm
	Putting all at once using Lazy.jl

	Writing an objective function
	Indices and tables

